Minimising Energy Consumption of Industrial Robots

  Enquire / contact me

How to achieve 50% reduction of energy usage in the production of car bodies

Minimising Energy Consumption of Industrial Robots
Minimising Energy Consumption of Industrial Robots

Energy consumption is becoming a key aspect in robotics, and Kuka Systems, a subsidiary of robotics and plant engineering company Kuka AG, is participating with around 50 other companies in a project supported by the German Ministry of Education & Research with the aim of achieving a 50% reduction of energy usage in the production of car bodies. The manufacturer has also launched its own project on energy efficiency, including the development of a tool to predict the energy consumption of a complete production line at the planning stage.

In order to assess the effectiveness of these measures, detailed information on the energy consumption of the components used in the production line and different robot activities are required. Kuka Systems has built a database for this purpose which contains the respective energy requirements of different robot activities. Some of these data are provided by the manufacturers of the system components while others are determined by appropriate measurements.

"These measurements allow us to capture the actual energy consumption and try out various optimisation options", says Tobias Zimmermann, development engineer at Kuka Systems: "We mostly consider complete tasks rather than just individual movements, and we also include measurements at individual customers' premises." These tests include handling processes and spot welding, both of which involve very different movements. For handling tasks, for example, the robot uses all axes to move the components as quickly as possible from one point to another. When setting welding points, however, it makes many small movements in between generating short high-current bursts for the welding process.

"We also measure the energy consumption of the various tools, which offers further opportunities for savings", adds Matthias Paukner, project development manager at Kuka Systems: "In spot welding, for example, both the power consumption and wear can be reduced." In addition, Kuka takes into account the times when the robot is inactive, such as at night-time, by switching everything to "hibernate mode", a state similar to the standby mode of consumer PCs, which can reduce consumption by 90%.

The robots usually have a motor for each of the six axes, each controlled by a three-phase inverter. In the resting position a robot consumes about 700 W, which after 20 seconds at a standstill is automatically reduced to only 200 W. In the "hibernate" mode, the power consumption of the overall system of control, inverter and robots is about 18 W, and in full operation it rises to peaks of about 60 kW. Added to this is the power consumption of the tools.

For measurements on the robots and other equipment Kuka Systems uses Yokogawa's PX8000 Precision Power Scope. The PX8000 has proved particularly useful in demonstrating the effectiveness of certain measures that Kuka Systems has developed including special control programs that perform predetermined movements. In particular, the PX8000 has the ability to both record data and carry out subsequent analysis. This allows the measured values to be transmitted to a database containing data for a variety of movement profiles from many different components of a production line. Currently about 300 different values are stored for each robot type. The measured power values then form the basis for the simulation of the energy consumption of an entire production hall.

Posted on November 17, 2015 - (668 views)
by
Related articles
Easily print labels from your smartphone!
Turntable Bearings for Medical Applications
Take your temperature measurements to the next level
Custom Engineered Components
Ergonomic Safety Handles
High-Speed Camera with 4 Channels CXP-12
Bolts Configurator with Groove
3D Scanning and Inspection Solutions
Bi-Metal Temperature Gauges
Hoist Trolleys
Sensing Innovation in Process and Control
Ultrasonic Flowmeter TRX
Hannay Reels Delivers Every Time
Multi-protocol Network Diagnostics
Take your Manufacturing to the Edge. Connect Everything
Power in new Dimensions - BXT Motor Family
Mechanical Position Sensor MP600 Series
Heaters of H series
3 Phase Book Style EMC Filter
Leading Distributor in Automation & Robotics Technology
High-Speed Camera with 4 Channels CXP-12
Bi-Metal Temperature Gauges
Industrial Wireless LAN Access Points
FMAC NEO: 3-Phase Mains Filter
Cogent DataHub IoT Gateway
Chip Fuse for Highest Demands
SUT-H: for Hgh Inrush Currents
FPBB RAIL - Compact DIN-Rail Filter
DG11: IEC Appliance Plug with Circuit Breaker
Labfacility L60+ Thermocouple & Fine Wire Welder
Easily print labels from your smartphone!
Ergonomic Safety Handles
Bi-Metal Temperature Gauges
Hoist Trolleys
Interactive Projection Module
JVL Shows the Highlight of SPS IPC Drives 2018
Schildknecht Presents the Universal ioT Gateway at SPS IPC Drives 2018
Danfoss Drives Presented its Latest Novelties at SPS IPC Drives 2018
Rockwell Presents the iTrack System at SPS IPC Drives 2018
Microscope Optics by Optris Presented at SPS IPC Drives