Human-Robot Collaboration Thanks to Artificial Intelligence

  Enquiry / contact me

Festo has demonstrated with its BionicWorkplace how it is possible for a human to work together with a bionic robotic arm, along with numerous assistance systems and peripheral devices that are connected and communicate with each other

Artificial Intelligence, Industry 4.0

Human-Robot Collaboration Thanks to Artificial Intelligence
Human-Robot Collaboration Thanks to Artificial Intelligence

Industrial progress brought new requirements such as short product life cycles and a high diversity of variants. Employees ability to rapidly adapt to new tasks is becoming increasingly important. This calls for new forms of collaboration between people, machinery and software. A key role is played here by self-learning systems with artificial intelligence and by robot-based automation solutions that can work hand in hand with the human operator and can form networks with each other. All these requirements are fulfilled by the BionicWorkplace – a ground-breaking working environment being presented by Festo at the Hanover Messe 2018 trade fair.

A flexible future

The future of production is flexible – in terms of the products manufactured, but also of the workplace and the design of the working environment. Artificial intelligence and machine learning are transforming workplaces into learning systems that constantly develop and optimally adapt themselves to the requirements at hand. Festo is impressively demonstrating this with the BionicWorkplace, in which a human works together with a bionic robotic arm, along with numerous assistance systems and peripheral devices that are connected and communicate with each other. The operator is supported in these tasks by technology that relieves him or her of tiring or hazardous activities.

A learning system based on sensors and artificial intelligence

The entire workplace is ergonomically designed and can be individually adapted to people, right down to the lighting. Sensors and camera systems register the positions of the operator, components and tools, so that humans can intuitively control the BionicCobot by means of gestures, touch or speech. At the same time, a software system processes all the camera images and input from the various peripheral devices. It uses this information to derive the optimal program sequence. The system learns from each action initiated and thus constantly optimises itself. Controlled, programmed and set sequences therefore gradually make way for a much freer method of working.

Sharing knowledge and making it globally available

Once learnt and optimised, the processes and skills of the BionicWorkplace can be very easily transferred to other systems of the same type in real time and made available worldwide. It will be possible in future, for example, to integrate workplaces into a global network in which knowledge modules can be shared; the communication would be effected in the various national languages. Production will then become not only more flexible, but also more decentralised: the operators could call up production orders via Internet platforms, for instance, and carry them out autonomously in cooperation with the machinery – in keeping with individual customer desires and requirements. Remote manipulation of the workplace is also conceivable.

The BionicCobot as a central element

A key component of the working environment is the pneumatic lightweight “BionicCobot”. This robot is modelled on the human arm. Its movements are generated by compressed air, which makes it flexible; it can therefore directly and safely interact with people. This is made possible by digitalised pneumatics: the Festo Motion Terminal used together with the BionicCobot opens up entirely new solution spaces for safe human-robot collaboration and enables the BionicCobot to carry out either rapid and powerful, or soft and delicate movements.

Scenario for individual production

At the Hannover Messe, a scenario is being demonstrated for the manufacture of an individual product at the BionicWorkplace. To produce an individual model of a head, for example, a laser cutter first slices sections of acrylic glass: a software program converts the stored facial features of a person scanned using a smartphone into a CAD model, which it then breaks down into separate slices. The laser cutter then cuts the elements out of acrylic glass on the basis of this 3D template. The BionicCobot takes the slices directly from the cutter and gives them to the operator in the right sequence, who then assembles them to make a unique model.

The constant automatic feed of material in this scenario is ensured by a Robotino®, which autonomously travels back and forth between the stations and safely finds its way by means of a laser scanner. It is loaded by a refined version of the BionicMotionRobot, a soft robotic structure with pneumatic compartments and a 3D woven textile covering. This configuration thus combines all key elements of robot technology.

Posted on August 22, 2018 - (826 views)
Festo AG & Co. KG
Ruiter Straße 82
73734 Esslingen - Germany
+49-711-3474032
+49-711-3472628
View full company profile
Location
More products from this supplier
Gentle and Reliable Wafer Handling
Bringing Artificial Intelligence Directly to the Machine
Virtual Round Table - Digitalization on the Rise: Festo
Pneumatic Robotics “Shakes the Hand” of Artificial Intelligence
How is Artificial Intelligence Advancing Automation?
Pneumatic Automation Platform
Getting Started with the Industry 4.0 Journey
Automation platform and valve terminal
Getting a Grasp of Industry 4.0
Superconductivity for Specialist Areas
Related articles
Monitoring and Surveillance Solutions for Governmental Authorities
YOKOGAWA’s Global virtual event Y NOW 2021
AI plug-in Card with Coral Edge TPUTM for Retrofitting
Wireless Systems that Simplify IoT Connectivity
Stratasys Innovation Showcased at Formnext With Largest-ever new Product Line-up
Manufacturing Operations Management: A High-Value Starting Point for Digital Transformation
FDT 3.0 and OPC UA: Enabling IT/OT Interoperability in the New Age of Automation
Distributive IIoT Architecture
Best Practices For Profitable Warehouse Management
Single Board Computer for Real-time Critical Applications
Mobilizing Real-time Remote Operations
JUMO IoT Platform for Reliable Process Management
Robot Tools RFID Identifications
Open Standards Platforms
Open Standards Platforms
Co-creating the Future of the IoT World
Co-creating the Future of the IoT World
Procentec: Industry 4.Human
Robot Tools RFID Identifications
Co-creating the Future of the IoT World
YOKOGAWA’s Global virtual event Y NOW 2021
Single Board Computer for Real-time Critical Applications
Global Survey Conducted by Molex Highlights Continued Progress in Industry 4.0
Box PC with AI-based Image Recognition
Fanless AI Box PC with 256 CUDA Core Processors
Versatile Industrial 5G Router
Unistream® PLC: Robust PLC Hardware with Virtual HMI
A Revolution of the Modern Data Center
BMW Chooses Inspekto to Bring AI to the Factory Floor
IP67 Ultra-robust HMI Devices
YOKOGAWA’s Global virtual event Y NOW 2021
Distributive IIoT Architecture
Managed Service Suite Platform for Plant Asset Performance
Lilly Life Science Studio Automated Laboratory Goes Further in the Search For New Drugs
IERA 2021 Awarded to ABB's PixelPaint Solution
PTC Leverages Spatial Computing Capabilities with Vuforia Engine Area Targets
HMS Networks Releases the World’s First Industrial 5G Router and Starterkit
New Series of Transducers for High Performance Gaging Probes
Ultrasonic Sensors with IO-Link Interface
Turning Data into Actionable Information is Vital to the Success of any Industry 4.0 Projects