Signed a Cooperation Agreement Between Schaeffler and DMG MORI

  Enquire / contact me

The companies are expanding their partnership to include the development of additive manufacturing processes for rolling bearing components

Signed a Cooperation Agreement Between Schaeffler and DMG MORI
Signed a Cooperation Agreement Between Schaeffler and DMG MORI

Schaeffler and DMG MORI have signed a cooperation agreement at JIMTOF 2016 in Japan that has the objective of jointly pursuing development work in the field of additive manufacturing of rolling bearings. Additive manufacturing is a strategic focus in Schaeffler’s development roadmap.

Laser deposition welding for the manufacture of rolling bearings

The basis for the joint development work will be a Lasertec 65 3D made by DMG MORI, a five-axis machining centre including a laser metal deposition welding unit, which will be used at Schaeffler. The goal is to develop the additive manufacturing technology of what is called laser metal deposition welding so that it can be used for the flexible manufacture of rolling bearing components for prototypes and small batch sizes.

Continuing premium partnership in marketing

Both companies also extended their marketing partnership to 2017 at JIMTOF. Operators of machine tools will benefit from the cooperation in two ways. First, it will help to demonstrate bearings, linear technology and direct drive technology, as well as new ideas in sensor systems and linking components. Second, it will help to show how these can be used for predictive maintenance, increasing efficiency and process optimisation.

Added value through digitalisation: “Machine Tool 4.0” innovation project

Schaeffler and DMG MORI presented the “Machine Tool 4.0” innovation project jointly with other partners. The project links existing technology with new digitalised components from sensors to the Cloud. Two prototypes were set up based on the fourth-generation DMC 80 FD duoBLOCK® universal milling and turning machining centre. Additional sensors for measuring vibrations, forces, temperatures and pressures have been integrated in almost all bearing positions relevant for the machining process in the prototypes of the innovation project in order to obtain optimum information about the machine’s condition.

Posted on January 13, 2017 - (375 views)
Related articles
3D-printed Humanoid Robot
Industrial Grade Edge Computing Device
A Convention for European AI-holics
Predictive Intelligence Platform
Record Sales Turnover for Resolve Optics Ltd
Unitronics Launches its New VFD Line
On the Road to Energy Sustainability
How to optimise gas engine performance
FIVE-YEAR SOLE SUPPLY AGREEMENT FOR EXXONMOBIL AND INFINIS
Increasing Bearing Reliability of Wind Turbines
Mercury: Mobile, multi-protocol diagnostics for all environments
System-based High Precision Linkages
Hannay Works Here
Sure Signs of Excellence: Top Notch Products Offering Added Value
HOT! Innovative Infrared Technology
Temperature Sensors in Stock for Immediate Worldwide Despatch
FANDIS' FF Series of Filter Fans
Sensing Innovation in Process and Control
Innovative Systems Solutions Made by LAPP
SAFETY? That's our top Priority
On the Road to Energy Sustainability
Hexagon PPM and Ditio Established a Partnership to Foster Digital Transformation
Digitalization will be the Number 1 Trend at ADIPEC 2018
Monitoring receiver
3D Surround View System
Flow Measurement Device
PTFE Membrane Filters
Comprehensive Bonding Technologies
Stainless Drives Take Over at Fish Processing Plat
IPLEX G Lite