Sensor & Evaluation Electronics Play Crucial Role in Rosetta Comet Lander

  Enquire / contact me

Analysing the chemical composition of the comet’s surface

Sensor Technology

Sensor & Evaluation Electronics Play Crucial Role in Rosetta Comet Lander
Sensor & Evaluation Electronics Play Crucial Role in Rosetta Comet Lander

Micro-Hybrid Electronic GmbH, a member of the Micro-Epsilon Group, has developed aerospace-grade sensor and evaluation electronics for scientific instruments installed on the Rosetta space probe's lander, Philae, which landed on the surface of the Churyumov-Gerasimenko comet on 12th November 2014.

Launched in 2004, the 1.3 billion euro Rosetta project is an ESA (European Space Agency) mission with contributions from its member states and NASA. The box-shaped Philae lander, which weighs around 100kg, is equipped with a variety of scientific instruments whose function is to analyse the surface of the comet. Philae comprises of a baseplate, an instrument platform and a polygonal sandwich construction, all made from carbon fibre, as well as three unfolding legs for landing. Philae carries 10 instrument modules with a combined total mass of around 21kg.

One of these 10 instrument modules is APXS (Alpha Protons X-ray Spectrometer), whose function is to analyse the chemical composition of the surface of the comet. In order to investigate a particular material, the device bombards its surface with alpha particles and X-rays. By measuring the backscatter from the particles, scientists can deduce the chemical composition of the material and obtain information about the presence of the important elements carbon and oxygen.

The sensor evaluation and electronics for APXS were developed by Micro-Hybrid and certified for this particular mission by working in close collaboration with the Max Planck Institute in Mainz, Germany. In critical space applications such as this, no mistakes can be afforded and there are no second chances if components fail. Not only were the Micro-Hybrid electronics designed to withstand 10 arduous years of space flight time, they also needed to withstand the high impact shocks and vibrations resulting from landing on the rough terrain of the comet.

Following its 10-year flight time in space and subsequent landing on the comet, the full functionality of the APXS module was confirmed. Karl-Heinz Suphan, Senior Project Manager R&D at Micro-Hybrid commented: "The components we've developed for the APXS instrument module need to withstand enormous levels of cosmic radiation and temperatures down to minus one hundred degrees Centigrade [-100 deg C]. Although the supply of high performance, high quality sensor evaluation and electronics is a common requirement for Micro-Hybrid, participating in such a high profile, spectacular project like Rosetta is particularly exciting for us and demonstrates our technical expertise and leadership in our field."

Rosetta is the first mission in history to rendezvous with a comet, escort it as it orbits the Sun, and then deploy a lander to its surface. Based on data gathered from the comet's surface, scientists hope to discover more about how the Earth was originally developed. The mission is expected to end in December 2015.
Micro-Hybrid also supplied sensor evaluation and electronics for the APXS instrument module on the successful NASA MER double mission to Mars in 2003.

Established in 1992 in Thuringia, Germany, Micro-Hybrid develops innovative mechanical microelectronics and infrared systems. A global leader in the development of customer-specific infrared sensors, Micro-Hybrid is the only company worldwide that offers a complete product portfolio for NDIR gas- and liquid- analysis. The company designs leading-edge hybrid solutions and LTCC (Low Temperature Cofired Ceramics) technology for global core markets, including medical and environmental technology, industrial and aerospace.

Micro-Hybrid offers a wide range of components for electronics applications including sensors and industrial systems for regulation, control and measurement. The company's micro systems are used in eddy current sensors for non-contact distance measurement and in flow sensors to determine the flow rate of oily or aqueous media. Infrared components are used for non-contact temperature measurement, flame detection, gas measurement and analysis of liquids.

Posted on March 17, 2015 - (761 views)
by
Micro-Epsilon Messtechnik GmbH & Co.KG
Königbacher Straße 15
94496 Ortenburg - Germany
+49-8542-1680
+49-8542-16890
View full company profile
Description

Micro-Epsilon offers one of the broadest product ranges of high-precision displacement sensors, 2D/3D laser scanners, IR temperature sensors, colour sensors and inspection systems in Europe.

Location
More products from this supplier
Compact Thermal Imaging Cameras ThermoIMAGER TIM
Compact True Color Sensor
A new performance class in inductive displacement measurements
Confocal Chromatic Sensors
True Color Recognition Sensors
optoNCDT Laser sensors
New draw-wire sensor
Precision displacement, distance and position measurement under pressure
Microscope Lens for Temperature Monitoring of Ultra-small Targets
Magneto-Inductive Sensors
Draw-Wire Sensors for Displacement, Length and Position
High Precision Laser Scanners for profile and gap measurement
A Class of its own
IR Temperature Sensors for Non-Contact Measurement from -50° to +2200° C
Draw-wire Sensors
Draw-wire Displacement Sensors
Laser Triangulation Sensors
Current Sensor with Integrated Electronics
High Precision Laser Scanner
IR Temperature Sensors
Compact True Color Sensor
A new performance class in inductive displacement measurements
New draw-wire sensor
Precision displacement, distance and position measurement under pressure
Confocal Midrange Controller with one and two Channels
New Draw-Wire Displacement Sensors Create New Opportunities
Universal Laser Sensor for Industry & Automation
Optical Precision Laser Micrometer
Capacitive Sensors for Displacement, Distance and Position
Non-Contact Temperature Measurement
Magneto-Inductive Sensors
Inductive Sensors
Solodeck - Micro-Epsilon - November 2014
Solodeck - Micro-Epsilon - November 2014
Solodeck - Micro-Epsilon - November 2014
Measurement Solutions
Sensors for Automation and OEM
Laser Scanner
Laser Triangulation Sensors
Laser Line Scanners
Related articles
Positioning with Large Reading Window
Industrial Humidity Transmitter EE23
High-Pressure Flowmeter Measures Liquid Refrigerants
Miniaturized Pressure Sensor
Gocator® 2500 Series: High-Speed 3D Smart Line Profile Sensors
Ultra-Low Power Accelerometer for IoT
3D Robotic Vision Guidance
Advanced Electric and Hybrid Powertrains Put to the Test
Digital Transmitters
Measuring the Position of Hydraulic and Telescopic Cylinders
Sensing Innovation in Process and Control
Level Switches RFS-9 and RFS-12
Mechatronic Products
Level Switches
Encoders for the Wind Industry
Temperature Sensors in Stock for Immediate Worldwide Despatch
Sensing Innovation in Process and Control
2 in 1 Mechanical Position Sensor
IR-SyM Easy Case
Sensing Incredible Things: Flow Meters
Ultra-Low Power Accelerometer for IoT
Measuring the Position of Hydraulic and Telescopic Cylinders
Smart Process Gating Method
3D Smart Sensors
Compact Rugged Pressure Transmitters
MicroScan3 Safety Laser Scanner
Torque Sensors and maXYmos TL Monitors
Safety Sensor  RSS 16
Emission Sensors to Improve Efficiency in the Heating Season
Sensors 4.0