Magneto-Inductive Sensors

  Enquire / contact me

Measure displacement of blade cut depth

Sensor Technology

Magneto-Inductive Sensors
Magneto-Inductive Sensors
Magneto-Inductive Sensors
Magneto-Inductive Sensors

Manufacturers of knives inspect blade sharpness by using several testing methods for quality control. CATRA in Sheffield/UK specializes in testing machines that determine blade cut depth. These machines are based on magneto-inductive sensors from Micro-Epsilon.

From the very early days, a knife has been one of the most important tools for humans. Even in the Stone Age, sharp blades were used. In the beginning, these were made from stone, wood, bones and other materials. Also bronze, iron and steel were used later. Since the 18th century, the knife has become part of the cutlery set and can be found in almost all cultures. It is used for works or in spare time activities, as cutlery, in the household or for shaving. There is one common requirement - the knife must be sharp and durable while cutting various materials with ease.

Cutlery and Allied Trades Research Association

Therefore, knives and blades must be sharp which is tested using corresponding machines. The Cutlery and Allied Trades Research Association, CATRA, manufactures the only cutting test machine on the market that fully conforms to the International Cutting Test Standard (BS EN ISO 8442-5.2005). The CATRA TESTER is an automatic and semi-automatic knife sharpness and life testing machine that measures the sharpness and edge life (durability) of a wide range of blades and knives. Here, CATRA relies on Micro-Epsilon’s unique magneto-inductive sensors which measure the distance from a magnet. The mainSENSOR not only measures the distance but also determines the speed of each blade stroke. The knife is mounted in a position with the blade vertical and the sharp side up. When the knife is in the right position, a stack of synthetic paper is lowered onto it. By oscillating the blade back and forth, the blade cuts into the paper, the depth of the cut being the measurement of sharpness. The test media is loaded with 5% silica, which has a mild wearing effect on the blade edge. By repeating the back and forth motion, further cuts are made, which increasingly wear the cutting edge. The measurement of cut depth at each subsequent stroke can then be plotted to produce a wear curve for each blade tested. A magnet of the magneto-inductive sensor is fixed on the movable slider that moves the knife back and forth. The sensor is 50mm away. The voltage level now indicates the displacement which the knife moves per stroke. Via the displacement over time, the stroke speed is measured (max. stroke 40mm). The cutting speed is 50mm/s and a typical test time is 15 minutes for 60 cutting strokes.

It’s a simple set up that is reliable, cost effective, and long life. Its robustness makes the mainSENSOR ideal for this measurement task. This means that customers not only benefit from having an extremely compact design, but the sensors also provide an attractive price-performance ratio for OEM applications.

Patented measuring principle

The mainSENSOR operates on a patented measuring principle developed by Micro-Epsilon, which combines the advantages of both inductive and magnetic sensors. A magnet is fixed to the measurement object. The movement of the magnet induces a change in the magnetic flow in the sensor element, which is detected by the sensor coil. A linear relationship between output signal and magnet distance (self-linearization technology) is produced due to counteracting physical effects. As different strength magnets are applied, measuring ranges of up to 55mm can be achieved. However, for changing the measuring range, it is only necessary to change the magnet. The mainSENSOR is maintenance and wear-free. As well as for displacement and distance measurements, these sensors are also used in special applications such as rotational speed measurement of e.g. shafts and large gear wheels.

Measuring through non-ferromagnetic materials

Unlike conventional measuring procedures, the magneto-inductive sensor also measures through non-ferromagnetic materials such as aluminum and steel. A clear benefit is provided here as the sensor and the magnet can be installed separately in applications with closed systems or housings. It is therefore possible to mount the magnet safely in harsh environments and the sensor in protected areas.

Posted on April 12, 2018 - (14842 views)
Micro-Epsilon Messtechnik GmbH & Co.KG
Königbacher Straße 15
94496 Ortenburg - Germany
+49-8542-1680
+49-8542-16890
View full company profile
Description

Micro-Epsilon offers one of the broadest product ranges of high-precision displacement sensors, 2D/3D laser scanners, IR temperature sensors, colour sensors and inspection systems in Europe.

Location
More products from this supplier
Compact True Color Sensor
A new performance class in inductive displacement measurements
Confocal Chromatic Sensors
True Color Recognition Sensors
optoNCDT Laser sensors
New draw-wire sensor
Precision displacement, distance and position measurement under pressure
Microscope Lens for Temperature Monitoring of Ultra-small Targets
Miniature Draw Wire Sensor
Reliable Inspection of Wind Turbines
High Precision Laser Scanners for profile and gap measurement
A Class of its own
IR Temperature Sensors for Non-Contact Measurement from -50° to +2200° C
Draw-wire Sensors
Draw-wire Displacement Sensors
Laser Triangulation Sensors
Current Sensor with Integrated Electronics
High Precision Laser Scanner
IR Temperature Sensors
Compact Thermal Imaging Cameras
Compact True Color Sensor
A new performance class in inductive displacement measurements
New draw-wire sensor
Precision displacement, distance and position measurement under pressure
Confocal Midrange Controller with one and two Channels
New Draw-Wire Displacement Sensors Create New Opportunities
Universal Laser Sensor for Industry & Automation
Optical Precision Laser Micrometer
Capacitive Sensors for Displacement, Distance and Position
Non-Contact Temperature Measurement
Magneto-Inductive Sensors
Inductive Sensors
Solodeck - Micro-Epsilon - November 2014
Solodeck - Micro-Epsilon - November 2014
Solodeck - Micro-Epsilon - November 2014
Measurement Solutions
Sensors for Automation and OEM
Laser Scanner
Laser Triangulation Sensors
Laser Line Scanners
Related articles
Position Switches
Positioning System
New C6B force transducer from HBM
Identification Module
Safety Sensors ST Series
The Importance of Increasing Safety Functions
Beverage Dispensing Flowmeters
Omron Integrates Microscan Systems Solutions into Its Portfolio
A New Generation of Compact Process Controllers
Ultraminiature IEPE Accelerometer
Mechatronic Products
Level Switches
Encoders for the Wind Industry
Temperature Sensors in Stock for Immediate Worldwide Despatch
Sensing Innovation in Process and Control
2 in 1 Mechanical Position Sensor
IR-SyM Easy Case
Sensing Incredible Things: Flow Meters
Temperature Sensors in Stock for Immediate Worldwide Despatch
Temperature and Pressure Sensor With IO-Link
Smart Process Gating Method
3D Smart Sensors
Compact Rugged Pressure Transmitters
MicroScan3 Safety Laser Scanner
Torque Sensors and maXYmos TL Monitors
Safety Sensor  RSS 16
Emission Sensors to Improve Efficiency in the Heating Season
Sensors 4.0
Fork Light Barriers
Encoders For Space