Magneto-Inductive Sensors

  Enquiry / contact me

Measure displacement of blade cut depth

Sensor Technology

Magneto-Inductive Sensors
Magneto-Inductive Sensors
Magneto-Inductive Sensors
Magneto-Inductive Sensors

Manufacturers of knives inspect blade sharpness by using several testing methods for quality control. CATRA in Sheffield/UK specializes in testing machines that determine blade cut depth. These machines are based on magneto-inductive sensors from Micro-Epsilon.

From the very early days, a knife has been one of the most important tools for humans. Even in the Stone Age, sharp blades were used. In the beginning, these were made from stone, wood, bones and other materials. Also bronze, iron and steel were used later. Since the 18th century, the knife has become part of the cutlery set and can be found in almost all cultures. It is used for works or in spare time activities, as cutlery, in the household or for shaving. There is one common requirement - the knife must be sharp and durable while cutting various materials with ease.

Cutlery and Allied Trades Research Association

Therefore, knives and blades must be sharp which is tested using corresponding machines. The Cutlery and Allied Trades Research Association, CATRA, manufactures the only cutting test machine on the market that fully conforms to the International Cutting Test Standard (BS EN ISO 8442-5.2005). The CATRA TESTER is an automatic and semi-automatic knife sharpness and life testing machine that measures the sharpness and edge life (durability) of a wide range of blades and knives. Here, CATRA relies on Micro-Epsilon’s unique magneto-inductive sensors which measure the distance from a magnet. The mainSENSOR not only measures the distance but also determines the speed of each blade stroke. The knife is mounted in a position with the blade vertical and the sharp side up. When the knife is in the right position, a stack of synthetic paper is lowered onto it. By oscillating the blade back and forth, the blade cuts into the paper, the depth of the cut being the measurement of sharpness. The test media is loaded with 5% silica, which has a mild wearing effect on the blade edge. By repeating the back and forth motion, further cuts are made, which increasingly wear the cutting edge. The measurement of cut depth at each subsequent stroke can then be plotted to produce a wear curve for each blade tested. A magnet of the magneto-inductive sensor is fixed on the movable slider that moves the knife back and forth. The sensor is 50mm away. The voltage level now indicates the displacement which the knife moves per stroke. Via the displacement over time, the stroke speed is measured (max. stroke 40mm). The cutting speed is 50mm/s and a typical test time is 15 minutes for 60 cutting strokes.

It’s a simple set up that is reliable, cost effective, and long life. Its robustness makes the mainSENSOR ideal for this measurement task. This means that customers not only benefit from having an extremely compact design, but the sensors also provide an attractive price-performance ratio for OEM applications.

Patented measuring principle

The mainSENSOR operates on a patented measuring principle developed by Micro-Epsilon, which combines the advantages of both inductive and magnetic sensors. A magnet is fixed to the measurement object. The movement of the magnet induces a change in the magnetic flow in the sensor element, which is detected by the sensor coil. A linear relationship between output signal and magnet distance (self-linearization technology) is produced due to counteracting physical effects. As different strength magnets are applied, measuring ranges of up to 55mm can be achieved. However, for changing the measuring range, it is only necessary to change the magnet. The mainSENSOR is maintenance and wear-free. As well as for displacement and distance measurements, these sensors are also used in special applications such as rotational speed measurement of e.g. shafts and large gear wheels.

Measuring through non-ferromagnetic materials

Unlike conventional measuring procedures, the magneto-inductive sensor also measures through non-ferromagnetic materials such as aluminum and steel. A clear benefit is provided here as the sensor and the magnet can be installed separately in applications with closed systems or housings. It is therefore possible to mount the magnet safely in harsh environments and the sensor in protected areas.

Posted on April 12, 2018 - (15105 views)
Micro-Epsilon Messtechnik GmbH & Co.KG
Königbacher Straße 15
94496 Ortenburg - Germany
+49-8542-1680
+49-8542-16890
View full company profile
Description

Micro-Epsilon offers a worldwide unique range of high-precision displacement sensors, 2D/3D sensor systems, IR temperature sensors, colour sensors and inspection systems.

Location
More products from this supplier
All-In-One System for Precise Thickness Measurements in the Line
High-Performance Laser Distance Sensor for Industrial Applications
Fast High-Precision 2D/3D Profile Measurements
Inductive Displacement Measuring System
High-precision Automated Inline 3D Inspection
Capacitive Rotation Speed Sensor for Industrial Measurement Tasks
High-resolution 2D/3D Laser Profile Scanners
Laser Displacement Sensors for Automation
Inductive LVDT Sensors and Gauges with More Precision
High-Performance Laser Distance Sensor for Industrial Applications
Laser Displacement Sensor for Advanced Automation
Thickness Sensor
2D/3D Profile Measurement
Miniature Draw-wire Sensors MT Series
Non-contact Temperature Measurement
Micro-Epsilon Capacitive Sensors
Compact Laser Scanner
Accurate Laser Sensors
Color Sensor
Laser Triangulation Sensors optoNCDT 1420
All-In-One System for Precise Thickness Measurements in the Line
High-Performance Laser Distance Sensor for Industrial Applications
Inductive Displacement Measuring System
High-precision Automated Inline 3D Inspection
Capacitive Rotation Speed Sensor for Industrial Measurement Tasks
High-resolution 2D/3D Laser Profile Scanners
Laser Displacement Sensors for Automation
Inductive LVDT Sensors and Gauges with More Precision
High-Performance Laser Distance Sensor for Industrial Applications
A New Performance Class in Inductive Displacement Measurements
Related articles
Optimum Coolant Flow
Automated Quality Control Solutions
Gas Detection Solutions
Ultrasonic Distance Sensor
Hand-held Metrology Grade 3D Scanner
Ceramic Pressure Sensor
Ceramic Pressure Sensors and Oil-Filled Pressure Sensors
VPFlowScope M flow meter: Measure, Discover & Save
4-in-1 Flow Meter
5 MP GigE Industrial Cameras
Ceramic Pressure Sensors and Oil-Filled Pressure Sensors
VPFlowScope M flow meter: Measure, Discover & Save
VOS 2-D Universal Vision Sensors
Rugged Smart & Easy-to-Install IR Sensors
High-Temperature LVDT Position Sensors
Magnetostrictive Linear Displacement Transducer
Environmental Resistant Linear Encoder
Upturn in Demand for High Performance Mini Turbine Flowmeters
New High-Speed Pyrometer CT 4M from Optris
Micro Sensor for Temperature, Pressure, Tension, Torsion, Position, Electric Current and Magnetic Field Measurements
VPFlowScope M flow meter: Measure, Discover & Save
PTC Leverages Spatial Computing Capabilities with Vuforia Engine Area Targets
New High-Speed Pyrometer CT 4M from Optris
Micro Sensor for Temperature, Pressure, Tension, Torsion, Position, Electric Current and Magnetic Field Measurements
HMS Networks Releases the World’s First Industrial 5G Router and Starterkit
New Series of Transducers for High Performance Gaging Probes
Thermal Profiling Systems
Infrared Temperature Solutions
Ultrasonic Sensors with IO-Link Interface
5-Megapixel 3D Snapshot Sensor